
Adaptive-Halting Policy Network for Early Classification
Thomas Hartvigsen

Worcester Polytechnic Institute
twhartvigsen@wpi.edu

Cansu Sen
Worcester Polytechnic Institute

csen@wpi.edu

Xiangnan Kong
Worcester Polytechnic Institute

xkong@wpi.edu

Elke Rundensteiner
Worcester Polytechnic Institute

rundenst@wpi.edu

ABSTRACT
Early classification of time series is the prediction of the class label
of a time series before it is observed in its entirety. In time-sensitive
domains where information is collected over time it is worth sacri-
ficing some classification accuracy in favor of earlier predictions,
ideally early enough for actions to be taken. However, since ac-
curacy and earliness are contradictory objectives, a solution must
address this challenge to discover task-dependent trade-offs. We de-
sign an early classification model, called EARLIEST, which tackles
this multi-objective optimization problem, jointly learning (1) to
classify time series and (2) at which timestep to halt and generate
this prediction. By learning the objectives together, we achieve a
user-controlled balance between these contradictory goals while
capturing their natural relationship. Our model consists of the
novel pairing of a recurrent discriminator network with a stochas-
tic policy network, with the latter learning a halting-policy as a
reinforcement learning task. The learned policy interprets represen-
tations generated by the recurrent model and controls its dynamics,
sequentially deciding whether or not to request observations from
future timesteps. For a rich variety of datasets (four synthetic and
three real-world), we demonstrate that EARLIEST consistently out-
performs state-of-the-art alternatives in accuracy and earliness
while discovering signal locations without supervision.

CCS CONCEPTS
•Computingmethodologies→Neural networks; Supervised
learning by classification;

KEYWORDS
Recurrent Neural Network, Reinforcement Learning, Early Classifi-
cation, Time Series Classification

ACM Reference Format:
Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, and Elke Rundensteiner.
2019. Adaptive-Halting Policy Network for Early Classification. In The 25th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330974

Figure 1: Example of three approaches to early classification
of two time series. + and – denote class labels; vertical dashed
lines indicate halting-points. Timesteps after halting-points
in gray are not used for classification.

’19), August 4–8, 2019, Anchorage, AK, USA. ACM, Anchorage, AK, USA,
August 4-8, 2019 , 10 pages. https://doi.org/10.1145/3292500.3330974

1 INTRODUCTION
Background. Traditional time series classification assumes that
a time series as a whole has been received before predicting its
class label. In time-sensitive applications, however, it is essential
that predictions are generated well before the entire series has
been observed. For example, in clinical diagnosis, it is often worth
sacrificing some accuracy in favor of earlier predictions. This gives
clinicians enough time to address infections as they evolve for the
sake of the patient’s health and to curb the spread of the infection.
In these settings, a decision-maker must determine how much

https://doi.org/10.1145/3292500.3330974
https://doi.org/10.1145/3292500.3330974

accuracy to sacrifice in favor of earliness, with the optimal trade-off
depending on both the task and the domain.

Motivating Examples. Figure 1 depicts an example of the Early
Classification of Time Series (ECTS) problem where each time se-
ries contains unique signals indicating their respective class labels.
Approach 1 illustrates the traditional classification scheme, predict-
ing labels only after the entire time series has been observed. This
results in a highly accurate classifier, as it has the opportunity to
capture all signals at the cost of providing predictions at the very
end (indicated by the dashed halting-line). Approach 2 refers to the
strict early classification method, choosing a fixed early timestep at
which to always stop and predict. In this approach, for some time
series signals have not arrived yet, while for others decisions are
postponed unnecessarily. Approach 3 shows the benefit of adaptive-
early classification, selecting halting-points on a case-by-case basis
(vertical line) thus allowing for early, yet accurate, predictions.

We note that an effective model for time series classification
in time-sensitive domains should not only model discriminating
signals, but also identify timesteps at which enough information
has been observed to reliably (to the requested degree) predict a
label. It must also be tunable based on the desired domain-specific
emphasis on accuracy versus earliness.

State-of-the-Art. Recently, interest in ECTS has rapidly in-
creased in the literature. Most existing methods exhaustively search
among all possible subsequences to identify subsequences that im-
ply class labels [8, 13, 19, 32, 33], called shapelets [35]. After shapelet
identification, each shapelet candidate is compared to all possible
subsequences of testing time series for classification. This strat-
egy does not scale to the multivariate or long time series settings
as the number of combinations of variables and subsequences in-
creases exponentially [19]. Some works [23, 24, 31] instead search
for time series prefixes, slightly limiting the search-space. However
these works compare only prefixes of equal-length to one another,
not making use of potential comparisons between different pre-
fix lengths, and still not scaling to the multivariate setting. These
search-based approaches are not only rigid, but also do not take
advantage of recent success in parameterized sequence-modeling,
a promising approach to long high-dimensional time-series. The
aforementioned methods have two major limitations. First, they
do not allow for direct tunability between accuracy and earliness.
Second, they are not end-to-end: the exhaustive shapelet candi-
date extraction and early classification are independent. This leads
to different parts of the models having distinct and contrasting
goals (selecting a highly-predictive shapelet has nothing to do with
earliness), missing their natural relationship.

Problem Definition. The ECTS problem is to select a timestep
in a time series at which enough information has been observed
to predict a class label. It is challenging to balance the number
of observed timesteps with the expected accuracy. This is because
such multi-objective optimization problems involve task-dependent
trade-offs. A good solution for one time series may be bad for
another, requiring solutions to be highly adaptive and data-driven.

Challenges. Despite the importance of ECTS, several open chal-
lenges remain. We summarize three major challenges below:

• Lack of supervision: There are no labels indicating where sig-
nals occur within a time series; instead the complete time se-
ries is typically labeled by its class. Thus quantifying whether
or not a prediction should be made at a particular timestep is
difficult. In short, ECTS contains an inherently unsupervised
sub-task within an otherwise supervised learning problem.

• Multiple conflicting objectives: Earliness and accuracy tend
to contradict one-another. A maximally-early classifier may
not have enough information to make accurate predictions,
while a late classification may cause unnecessary delay and
miss precious opportunity to react. The balance is task-
specific and an optimal trade-off depends on the particular
task and domain. So far, no method allows for direct tuning
between these two goals.

• Multivariate signal evolution: In multivariate time series, sig-
nals indicative of a particular class label may develop at
vastly different times across variables, making the identifi-
cation of one halting point per time series (composed of all
variables) harder. There has been little work [8, 13, 19] in the
multivariate setting of ECTS, each with limited scalability.

Proposed Method. In this paper, we propose a solution to
the aforementioned open challenges called Early and Adaptive
Recurrent Label ESTimator, or short, EARLIEST. EARLIEST is
a novel deep network composed of a recurrent neural network
(RNN)-based Discriminator with a reinforcement learning-based
stochastic Controller network. During classification, the recurrent
model generates representations of time series one timestep at a
time, capturing complex temporal dependencies. The controller
interprets these in sequence, learning to parameterize a distribu-
tion from which decisions are sampled at each timestep, choosing
whether to stop and predict a label or wait and request more data.
Once the controller decides to halt, the discriminator interprets the
sequential representation to classify the time series. By rewarding
the controller based on the success of the discriminator and tuning
the penalization of the controller for late predictions, the controller
learns a halting policy which controls online halting-point selection.
This results in a learned balance between earliness and accuracy
depending on how much the controller is penalized. The size of the
penalty is a parameter chosen by a decision-maker according to
requirements of the task.

In contrast to traditional sequence-matching ECTS methods, our
model-based approach supports flexible earliness-accuracy trade-
offs per task using one integrated parameter, being optimized for
earliness and accuracy together in one end-to-end model. The resul-
tant solution corresponds to a general deep network model applica-
ble to a rich variety of time-sensitive classification tasks, including
video [20, 28] and text [15]. Empirical studies on real-world tasks
demonstrate that our approach outperforms baseline methods while
providing effective balancing between opposing goals.

Contributions. Our main contributions are summarized below:

• We design a novel ECTS method that handles the unsu-
pervised subproblem of early classification by formulating
halting-point selection as a reinforcement learning problem.

• We propose the first dual-optimization solution of the earli-
ness and accuracy goals by combining them into the objec-
tive function for one model. This allows analysts to select a

trade-off depending on the task via only one hyperparameter,
aiding interpretability for decision-making.

• We introduce a recurrent neural network-based ECTSmethod,
learning low-dimensional representations of time series and
leaning on recent successes in representation learning.

• We evaluate EARLIEST using four synthetic and three real-
world time-sensitive classification tasks using public datasets.
Results show that our method significantly outperforms
state-of-the-art alternatives in both accuracy and earliness.

2 RELATEDWORK
To the best of our knowledge, this is the first work supporting
task-dependent tunability in ECTS through joint-optimization, sup-
porting both univariate and multivariate data. Our work relates to
ECTS methods and conditional computation in neural networks.
We briefly discuss them both.

ECTS deals with predicting labels of time series before the time
series is fully observed. Many works have been proposed based on
modifying traditional distance-based classifiers through exhaus-
tive search instead of parameterized inference [8–10, 13, 31–33].
A well-known approach is to do a similarity search for shapelets,
or sub time series indicative of a class [33], then find their earliest
occurrences in testing time series. Typically, this involves extract-
ing all sub-time series as shapelet candidates and pruning them
based on their classification power. Then, a trade-off between ac-
curacy and earliness could be simulated by lowering the support
required to qualify as a shapelet [33]. However, at test time, there
is only sequence matching, so there is no clear risk computed with
predicting at each timestep. Thus these models are not inherently
“time-aware”, as shapelets do not capture the timing of observations.
For example, the same signal may appear at consistently differ-
ent times in different classes. However, shapelet methods do not
consider this to be discriminative. An additional issue with these
methods is that the search space for shapelets increases with both
the time series length and the number of variables [13]. Hence,
prefix-based ECTS methods are another promising approach where
sub-time series are extracted with the additional condition that they
must begin at the first timestep [23, 24, 31]. However, these existing
methods require a large group of independent classifiers, one per
time series length. Thus they miss the potential to learn relation-
ships between series of similar lengths. Using one model for all
lengths allows for the learning of more complicated relationships.

In most of these methods, feature extraction and prediction are
entirely separate, and so the tasks are unaware of each other. Hence,
they are not optimized together in one objective function, miss-
ing out on natural connections between these two goals. Their
exhaustive search instead of parameterized classification models
also limits application in settings with long and/or high numbers of
time series. Notably, [23] does joint-optimization, though through
a massive collection of classifiers, missing relationships between
prefixes of different lengths.

Conditional computation in neural networks deals with learning
when to activate different subsets of neural networks, depending on
input data [25]. This can reduce the extensive computation required
to train a neural network since fewer computations need to be
made per example [2]. Additionally, the depth of a neural network

Table 1: Basic Notation

Notation Description

N Number of time series in dataset.
M Variables per time series.
L Classes for prediction.
T Number of possible timesteps.
X
(i)
t Variables at timestep t for time series i .

y(i) True label for time series i .
a
(i)
t Action at timestep t for time series i .

p
(i)
t Prob. of halting at timestep t for time series i .
S
(i)
t Learned representation for X (i)

0, · · · ,t .
πθ (·) Policy, maps states to actions: πθ (St) = at .
τ (i) Chosen halting-point for time series i .

where i = 1, · · · ,N and t = 1, · · · ,T .

has a major impact on performance [5], but selecting the proper
network complexity remains empirical and is often more art than
science. Our model leverages the idea of selectively activating parts
of a neural network and can be viewed as longitudinal conditional
computation: learning when to activate sections in time. There
is one other halting RNN, built for text classification [15], which
uses multiple loss functions without the full reinforcement learning
setting. [6] uses reinforcement learning for ECTS but does not
model temporal dynamics of the time series.

3 METHODOLOGY
3.1 Problem Formulation
Given a set of labeled multivariate time series, D = {

(
X ,y

)
} con-

taining N time series instances and labels, consider the ith instance

X (i) =

| | |

x
(i)
1 x

(i)
2 · · · x

(i)
T

| | |

where x (i)t ∈ RM contains theM variables recorded at time t . Hence-
forth, for ease-of-reading, we describe our method for one time
series and omit index i when it is not ambiguous. The aim is to
learn parameters θ of a function f (·), which maps a time series
X to a label ŷ (i.e., fθ (X) → ŷ), ultimately generalizing to classify
time series not observed during training. During the training pro-
cess, the goal is to match predicted labels ŷ to their corresponding
true labels y where y ∈ Y denotes the label associated with X and
Y = {0, · · · ,L}, the set of possible class labels. Each time series is
associated with exactly one label.

As an example, for in-hospital adverse-event detection, a multi-
variate time series X (i) may contain a patient’s vital signs recorded
longitudinally throughout her stay. This instance is labeled positive,
or y(i) = 1, if an adverse event occurs. Otherwise, X (i) belongs to
the control group and y(i) = 0.

In this work, we model fθ as a combination of neural networks.
However, as opposed to using all T timesteps to generate this pre-
diction, for each time series we seek a timestep τ ≤ T that is both
small enough to satisfy a preset requirement for earliness and large

Figure 2: Overview of EARLIEST. Selected action a chooses whether or not to pass St to the Discriminator or back to the Base
RNN to process the next timestep. Dashed lines indicate no gradient flow through these paths.

enough to satisfy a requirement for successful classification. We
refer to the selected τ as the halting-point.

3.2 RNN & LSTM Background
RNNs have emerged as the state-of-the-art for many time series
analysis models [12, 21] and other sequence modeling tasks such as
sequence generation [11, 34]. Our proposed model builds on RNNs,
which construct vector representations for real-valued sequences.
At each step of a sequence, a new representation is learned via a
function of the previous representation and new data observed at
the current step. The final vector, computed at the final step and
modeling dynamics of the sequence, can then be used to classify
the sequence. Empirically, RNNs with Long Short-Term Memory
(LSTM) cells [14] are more effective than as they were originally
proposed [7] as they preserve information over longer sequences.

3.3 The Proposed Method
The aims of our proposed adaptively-halting RNN, named EARLI-
EST, are twofold. First, to model multivariate time series for clas-
sification, and second, to select a halting-point at which enough
timesteps have been observed to make a task-dependently adequate
prediction. EARLIEST is a deep neural network consisting of three
sub-networks: (1) a Base RNN which learns to model multivariate
time series, generating low-dimensional vector represenations, (2)
a Discriminator Network, or Discriminator, which learns to predict
class labels based on the Base RNN ’s model, and (3) a Controller
Network, or Controller, which decides at each step whether or not
to halt the Base RNN and activate the Discriminator. Once the Con-
troller chooses to halt, the processing of the current time series is
complete. An overview of the EARLIEST architecture is shown in
Figure 2, where we display a rolled-up version of the RNN, showing
the interaction between each network for each timestep.

The Discriminator is trained with respect to the classification
task while the Controller is rewarded based on the success of the
Discriminator and is punished based on how many steps it takes
before deciding to halt. Thus, the Controller and Discriminator learn
to cooperate to make correct predictions. To incorporate earliness,
we add to the final objective function a loss term that competes

with the Controller’s natural tendency to wait, thus balancing the
trade-off between accuracy and earliness according to the scale of
this loss term. The final output of EARLIEST is a label ŷ which is
generated at some halting point τ , where τ ≤ T . The tunability of
the model dictates how much less τ is than T , which affects the
accuracy of the model depending on where signals are located.

3.3.1 Base Recurrent Neural Network. An RNN augmented with
LSTM cells [14] rests at the heart of EARLIEST, mapping variables
observed at each timestep, Xt , to vector representations St ∈ Rk

where k is the number of hidden dimensions, a tunable hyperparam-
eter. Standard to RNN literature, we refer to the whole recurrent
part of the network simply as an LSTM. One vector St is created
per timestep and is referred to as the hidden state. Each vector St
summarizes the time series dynamics present in X {0, · · · ,t } . Since
these vectors inform the other parts of the network, we refer to this
recurrent component as the Base RNN.

The LSTM is a function which learns to represent time series
data as vectors. Hidden state vector St is computed as a function
of currently-observed data Xt and the previous hidden state St−1,
hence the recurrent nature of the model. In an LSTM, the computa-
tion of St relies upon the computation of a cell memory state Ct ,
which is then used to compute hidden state St . The LSTM’s success
comes from learned gating mechanisms that curate information
contained in vector Ct . To compute Ct , first a forget gate controls
what information to remove from previous cell state Ct−1:

ft = σ (Wf · [St−1,Xt] + bf) (1)

An input gate controls new information added to Ct :

it = σ (Wi · [St−1,Xt] + bi) (2)

The updated Ct is then computed as the gated combination of
memory stateCt−1 and current Xt using the forget and input gates:

Ct = ft ⊙ Ct−1 + it ⊙ η(Wc · [St−1,Xt] + bc) (3)

Finally, state representation St is computed through an output gate
shown in Equation 4 operating on a non-linear Ct in Equation 5.

ot = σ (Wo · [St−1,Xt] + bo) (4)
St = ot ⊙ η(Ct) (5)

St is then used to inform decisions made by the Controller, gen-
erate classifications by the Discriminator, and compute the next
hidden states St+1 if the Controller so chooses. In these equations,
W ’s and b’s are learnable parameters, η(·) is the hyperbolic tangent
function, σ is the sigmoid function, · is the dot product, and ⊙ rep-
resents the hadamard product. For conciseness, we group these pa-
rameters into one large matrix θb . We denote this entire process as
function LSTM(·) such that LSTMθb (Xt , St−1) = St . While we use
LSTM cells, it is also possible to use alternative gating-mechanisms
such as the Gated Recurrent Unit [4].

3.3.2 Controller Network. The Controller is a reinforcement learn-
ing agent that decides whether or not to halt the Base RNN at each
timestep, prompting the prediction of a label. To achieve this goal,
the Controller solves a Partially-Observable Markov Decision Pro-
cess (POMDP) where at each timestep observations arrive from a
state, an action is sampled using a learned policy, and a reward
is observed according to the selected action’s quality. The objec-
tive is to optimize long-term rewards according to success of the
Discriminator. The model is trained by gradient-based policy search.

State: At each timestep t , the state is the set of currently observed
time series variables Xt , essentially a slice across all variables at
timestep t . Taking advantage of the representational power of the
Base RNN, the hidden state St is used as an observation from this
state space. St informs the selection of an action by the policy.

Policy: Next, an action is selected by a stochastic policy πθc (St) =
at , which treats input St as immutable data. In our experiments, we
use a one-layer fully-connected neural network to approximate this
function. Typical to reinforcement learning, we sample the action
from a parameterized distribution. Thus, a learned function maps
St to pt , where pt is the probability of halting, computed as

pt = σ (WhaSt + bha)

=
eWhaSt+bha

eWhaSt+bha + 1

(6)

whereWha and bha are learnable parameters for mapping hidden
outputs to actions and σ is the sigmoid function, which ensures
outputs between zero and one. pt then parameterizes a Bernoulli
distribution from which action at is sampled according to P(at =
1) = pt . In addition to hidden state St , we use current timestep t as
additional context to the network when computing pt .

Actions: Sampled action at dictates the proceedings of the Base
RNN as follows: if at = 0, the Controller has selected WAIT. This
prompts the Base RNN to move forward one timestep, the action-
selection process beginning again with LSTM(Xt+1) = St+1. On the
other hand, if at = 1, the Controller has selected HALT, at which
point the Discriminator is activated to predict a label and processing
of the current time series ends. Once the controller selects HALT (or
if t = T), t is considered to be the halting point τ . We use ε-greedy
action selection to avoid abundant exploitation in the Controller:
with probability ε , action at is replaced with a random action and
exponentially decrease ε from 1 to 0 during training, as shown in
Equation 7. During training, ε exponentially decreases from 1 to 0.

at =

{
at , with probability 1 − ϵ

random action, with probability ϵ
(7)

Reward: To train the Controller, it must observe returns which
qualify the parameters of the current policy. To encourage coopera-
tion between the Controller and Discriminator, this return takes the
form of a reward that quantifies the success of the Discriminator.
Thus, when the Discriminator is correct, we set reward rt = 1, and
when it is incorrect, rt = -1. The objective of the Controller is to
maximize total reward R =

∑τ
t=0 rt .

3.3.3 Discriminator Network. The Discriminator generates a pre-
diction ŷ by first projecting the hidden state St into L-dimensional
space using a fully-connected layer. Next, the resulting vector is
normalized to sum to one via the softmax function and can be
treated as probabilities. This computation is shown in Equation 8
whereWho and bho are parameters for mapping the hidden state
to the output space and are grouped into matrix θd .

P(Y = i | St ,Who ,bho) = softmax(WhoSt + bho)

=
eWhoSt+bho∑
j e

WhoSt+bho

(8)

Since the output vector sums to one after the softmax function,
predicted label ŷ is simply the maximum probability:

ŷ = argmax
i

P(Y = i | St ,Who ,bho) (9)

3.3.4 Training. In the training phase, the goal is to iteratively up-
date all learnable parameters of EARLIEST, minimizing errors made
by the Discriminator and maximizing the rewards observed by the
Controller. For readability, we gather all learnable parameters of
EARLIEST into matrix θ . EARLIEST is optimized by minimizing
one loss function J (θ), shown in Equation 14, using stochastic gradi-
ent descent (SGD). The Base RNN and Discriminator are optimized
together with respect to cross entropy loss shown in Equation 10
where θbd indicates parameters of the Base RNN and Discriminator.

Jbd (θbd) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (10)

In contrast to the other networks, in training the Controller the
goal is to find parameters θc that attain the highest expected return:

θ∗c = argmax
θc

E[R] (11)

Since the Controller involves sampling actions, back-propagation
does not directly apply, mandating transformation from this raw
form to a surrogate loss function [27]. This objective can thus be
optimized using gradient descent by taking steps in the direction
of E[R∇ logπ (S0, · · · ,τ ,a0, ...,τ , r0, · · · ,τ)] [26]. The gradient can then
be approximated as shown in Equation 12, which can then be mini-
mized to update the parameters of the controller [30].

Jc (θc) = −E

[
R

τ∑
t=0

logπ (at |St)

]
(12)

However, minimizing Jc (θc) directly leads to gradient estimates
that change dramatically across examples, resulting in high variance
in policy updates since each example is treated as if in isolation
[27]. To handle this, we add a baseline to Jc (θc), similar to [22], so
that θc is updated based on how much better the observed reward is

than average, resulting in

Jc (θc) = −E

[τ∑
t=0

logπ (at |St)
[τ∑
t ′=t

(
R − bt ′)

)]]
(13)

where bt is predicted at each timestep. We learn this baseline by
reducing the mean squared error between bt and R, forcing bt to
approximate the mean R.

3.3.5 Balancing Earliness and Accuracy. Up to this point, the Con-
troller’s only objective is to maximize the performance of the Dis-
criminator. To add earliness as a goal, we employ an additional
loss term, shown as the last term of our final loss function J (θ) in
Equation 14. This loss term encourages halting, depending on hyper-
parameter λ. When λ is large, to minimize the loss the probability
of selecting HALT must be large, controlling earliness directly.

J (θ) = Jbd (θbd) + α Jc (θc) + λ
τ∑
t=0

− logπ (at = 1 | St) (14)

Thus, since minimizing the log probability corresponds to increas-
ing the probability, by increasing λ, we effectively increase emphasis
on HALT. On the other-hand, when λ is small or 0, it leaves the
Controller free to exclusively maximize the performance of the
Discriminator. We note that in some cases, this may not mean ob-
serving all timesteps. For example, if a time series is too long, the
LSTM may have trouble remembering relevant information. Alto-
gether, this loss term creates competition on the optimization of the
Controller’s parameters as they are tugged in opposite directions,
the force of the tugging being controlled by λ.

4 EXPERIMENTS
4.1 Datasets
We evaluate our method on four variants of a synthetic dataset and
three real-world time-sensitive datasets from different domains.

SimpleSignal: The true locations of signals within time series
are rarely known. To better understand both how EARLIEST per-
forms in classification and in halting when it sees signals, we create
a synthetic dataset. Here, we can record exactly where signals are
located. For, each time series is initialized with a zero at each of
the T timesteps. Then, for positive examples, we sample a location
t ∈ {0, . . . ,T } from a selected distribution and substitute a one at
timestep t . Negative examples remain all zeros. The selection of the
signal distribution aids us in studying how each method captures
the true signal locations in a variety of settings. We use four signal
distributions: uniform, normal, right-skewed, and left-skewed. In this
setting, a successful model should halt when a signal is observed (a
one) and generate the correct prediction. Given access to each full
time series, a classifier should achieve perfect accuracy.

Mortality: This use case concerns predicting in-hospital mor-
tality and is based on a real-world dataset composed of EHR records
from intensive care unit patients in the Beth Israel Deaconess Medi-
cal Center (publicly-available MIMIC-III database [16]). These EHR
records contain time series of vital signs and microbiology tests.
For clinical classification tasks (e.g., diagnosis), early predictions
allow clinicians to take actions that directly benefit patient well-
being. The task here is to predict which patients will perish during
their stay given their multivariate time series of vital signs and lab

tests. We extract patients with positive Mortality Flags, indicating
their deaths and randomly draw an equal number of surviving pa-
tients from the rest of the database. This leads to health records
from 11,508 patients. We use the five most frequently recorded
vital signs as our variables. The fine-grained variables aren’t often
recorded at the same time, leading to sparse data. To handle this,
we compute daily averages for each variable, fill missing values
with variable-wise means, and use the first ten days for each series.

Seizures [1]: Seizure activity detection from EEG records, this
EEG data set from 500 subjects, each of whom had their brain
activities recorded via EEG, is used. There are a total of 11,800 178-
timestep time series, and the task is to detect which of these time
series contains evidence of epileptic seizure activity. Since there are
only 2,300 cases of such activity, we down-sample an equal number
from the negative class, resulting in a balanced dataset with 4,600
time series. Finally, we center the time series around zero and
compute the mean value of every 10-timestep chunk, summarizing
each 178 timestep series into 17 final timesteps.

TwitterBuzz [17]: To predict buzz events on Twitter, we work
with this data set of 77-dimensional labeled time series indicating
whether or not a spike in tweets on a particular topic is observed.
Starting with over 140,000 timesteps, we compute the mean of
every five steps, center the time series around zero, and break the
resulting 28,000 timesteps into 2,800 length-ten sequences. We then
extract the 1,271 time series containing any buzz events and balance
the dataset by randomly selecting an equal number of no-buzz time
series, resulting in a balanced dataset of 2,542 time series.

4.2 Compared Methods
We compare EARLIEST’s performance to the following algorithms:

• LSTM-Fixed [20, 29]. Fixed halting-point selection is com-
mon in time-sensitive classification tasks. It requires that
an analyst pre-selects a timestep at which all classifications
will be made. Since EARLIEST uses an LSTM, we use a fixed
halting-point version of LSTM, referred to as LSTM-Fixed.

• LSTM-s [20]. Designed for early classification of video, LSTM-
s can be directly applied to time series. LSTM-s encourages
early confidence in its predictions by penalizing the model
when it becomes less confident similar to an LSTM version
of ECTS algorithm ECDIRE [24]. Similar to LSTM-Fixed, this
method also uses a fixed pre-selected halting-point.

• LSTM-Confidence. Classifiers based on a softmax output as-
sign a probability to each class [3]. For this baseline, we set
a threshold α for the minimum confidence of a probabilistic
prediction. Once the network surpasses this confidence (i.e.,
max ŷ > α), the model halts and predicts the most likely
class. This model adaptively-halts per time series, but since
α is not included in the loss function, parameters are not
updated with respect to the goal of earliness.

Since other multivariate ECTS algorithms [8, 13] do not directly
support multiple trade-offs, our model is not directly comparable.

4.3 Implementation Details
For all datasets, we use an 80% training, 10% validation, and 10%
testing split. We use the training set to learn model parameters
and the validation set to evaluate the performance of a particular

hyperparameter setting (e.g., nodes-per-layer or learning rate). The
training and validation sets are used multiple times to tune hyper-
parameters, then the testing set is used once to compute the final
accuracy of each model. We use a two-layer BaseRNN for these
experiments, first learning 10-dimensional embeddings for time
series variables, and second learning sequences of 10-dimensional
representations, one per time step. We repeat this setup five times
and compute averages over these five settings to compute final
results. The model is optimized using Adam [18] with a learning
rate of 1e−4. All models are implemented using PyTorch with the
code available at https://github.com/thartvigsen/EARLIEST.

4.4 Experimental Results
4.4.1 Experiments on Synthetic Data. We first evaluate the perfor-
mance of EARLIEST in a controllable setting where signal locations
are known using the synthetic dataset SimpleSignal described in
Section 4.1. We evaluate EARLIEST in two ways: by determining
how early and accurate EARLIEST is compared to our baselines by
controlling the earliness-accuracy trade-off hyperparameter λ; and
second, how effectively EARLIEST halts when it observes signals,
thus matching the true distribution of signal locations.

Accuracy and timing: EARLIEST should more accurately classify
instances earlier than the baseline methods due to adaptive-halting.
In Figure 3, EARLIEST is run for λ ∈ [0.0, 0.15]. λ does not directly
control accuracy or earliness, instead urging the optimization in one
direction or the other. Thus for each λ, EARLIEST stabilizes at some
accuracy and distribution of halting points. We extract the mean
accuracies and halting-points (computed as the average percent of
timesteps used, or τ

T) with baseline predictions made at the same
time. We see in Figure 3a that for nearly all halting-points, EAR-
LIEST significantly outperforms the baselines, indicating higher
accuracy using on average the same information. The only overlap
is when all models have observed the entire time series, leading
to perfect classification accuracy. Additionally, we report the sen-
sitivity of EARLIEST to parameter λ in Figure 3b. This shows the
average accuracy and percent timesteps used for each λ. The smooth
down-ward trends indicate that as λ is increased, there is a smooth
coverage of all possible halting-points in these time series.

Signal-capturing: Next, EARLIEST should halt when it sees a
signal, and wait otherwise. To understand if this is the case, we
compute the root mean squared error (RMSE) between EARLIEST’s
selected halting points and the true distribution of signals, thus
quantifying how well EARLIEST halts when it sees a signal.

We use four distributions of positive labels to generate four
versions of the SimpleSignal data set. We expect that EARLIEST
should halt when it observes a positive signal and otherwise wait
until the end of the time series to classify negative instances. We
deem the final timestep to be the true signal location for negative
examples so we compare positive predicted locations to their known
signal locations, measuring true-positive signal-capture.

We show EARLIEST’s signal-capturing on SimpleSignal with
uniform, normal, left-skewed, and right-skewed signal distributions
in Figure 4, where λ is fixed to be .014, the best performing λ on the
uniform signal distribution. Additionally, this setting empirically
tended to result in a wide variance in predicted locations. We show

(a) Accuracy and timing

(b) λ coverage in EARLIEST

Figure 3: Accuracy and prediction times on synthetic data.
(a) EARLIESTmakes predictionsmore accurately and earlier
than baselines. (b) λ-tuning leads to smooth halting at each
timestep.

(a) Uniform signals. (b) Normal signals.

(c) Left-skewed signals. (d) Right-skewed signals.

Figure 4: True Signals indicates where signals actually ap-
pear in the time series, Predicted Locations shows the true-
positive halting-points selected by EARLIEST.

the true-positive predictions for each distribution, and the halting-
points are averages over all experiment repetitions. In the Uniform
setting, signals are equally likely to appear at any timestep. In
Figure 4a we see that the bars match, indicating that EARLIEST does
capture signal locations despite having no access to this information.
We see a similar trend for the Normal signal distribution (µ = 6.0,

(a) Baseline comparison.

(b) EARLIEST signal-capture sensitivity to λ.

Figure 5: Signal-capturing capabilities on synthetic data.
RMSE compares the predicted locations of positive exam-
ples with the true signal locations. (a) Minimum RMSE be-
tween predicted and actual locations for each model. (b) Pa-
rameter analysis for EARLIEST.

σ = 2.0) in Figure 4b, though the signal capture is not as exact. The
left-skewed distribution tests whether or not EARLIEST halts when
observing consistently-early signals. In Figure 4c we see this is the
tendency of the model, though EARLIEST waits until the end to
make one prediction once, missing the signal location. Using the
right-skewed distributionwe test whether or not EARLIEST canwait
for long periods of time if it does not observe any signals. In Figure
4d we show this is in fact the case, and the distributions match quite
well. These results demonstrate that EARLIEST is capable of flexibly
capturing signal locations, halting when signals are observed.

We next compare EARLIEST’s signal capture to that of the base-
lines using the uniform distribution of signal locations. For a fair
comparison, we compare the best average performance of each
method. In Figure 5a we show that EARLIEST with λ = .014 dra-
matically outperforms LSTM-FH and LSTM-s and is slightly superior
to LSTM-Confidence, demonstrating that EARLIEST is better at halt-
ing when it observes signals. We show the effect of parameter λ
on RMSE in Figure 5b. As expected, RMSE is poor with both low λ
(emphasizing waiting) and high λ (emphasizing halting), and better
in between. This indicates that beyond controlling accuracy, λ also
controls how effectively EARLIEST halts and captures signals.

4.4.2 Experiments on Real-world Data. We next present results
using real-world datasets Morality, Seizures, and TwitterBuzz.
We compare accuracies and average locations in Figure 6. Each point

(a) TwitterBuzz

(b) Mortality

(c) Seizures

Figure 6: EARLIEST’s performance on real-world data. EAR-
LIEST consistently has equal or better accuracy than the
compared methods given on average the same information.
Error bars are standard deviation over five repetitions.

for EARLIEST represents averaged results from λ settings that lead
to average halting at each timestep. Overall, we see that EARLI-
EST consistently performs equal to or better than the compared
algorithms at all possible halting points. Optimal halting-points are
unknown for these datasets, so we compare accuracy and earliness.

For TwitterBuzz, we observe in Figure 6a that EARLIEST out-
performs the baselines at nearly all timesteps. In the 20−60% range,
LSTM-s performs equally well. EARLIEST shows an average in-
crease of 2.81% accuracy over the best among the baselines at each
timestep with a maximum of up to 12.88%. This indicates that some
timesteps significantly benefit from adaptive-halting.

For Mortality, we see in Figure 6b that EARLIEST consistently
has a higher accuracy than the compared methods. This results
in a more modest average increase of .96% over the best baselines

with a maximum improvement of 1.91%. Interestingly, despite fine-
grained search, no λ led to EARLIEST halting in the 70− 80% range,
possibly due to underlying time series dynamics.

Finally, for Seizures, in Figure 6c we again see a similar trend,
the largest difference being that the most improvement over the
comparedmethods occurs early in the time series. This may indicate
that signals in this dataset appear early, and after a certain point
each model has observed nearly all useful information. In these
experiments, EARLIEST shows a mean of 2.61% improvement over
the best baselines with a max of 9.77%.

From our experiments on real-world datasets, we conclude that
for many parameter settings EARLIEST has higher accuracy than
the baselines while using on average fewer timesteps. For all set-
tings, EARLIEST performs equally or better than the baselines.
LSTM-s is competitive in many settings, though this method suffers
from its requirement for a preset fixed halting-point. For LSTM-
Confidence, the resulting halting-points are erratic since the confidence-
threshold is set externally to the model. We conclude that bene-
fits of adaptive-halting are also strongly-dependent on the timing
of signals. We suspect that the most benefit may be seen with
uniformly-distributed and pronounced signals.

5 CONCLUSION
In this work, we have developed EARLIEST, an adaptive model for
the early classification of time series. Our neural network-based
approach tackles the unsupervised nature of early classification
through reinforcement learning. EARLIEST directly models the
multiple objectives of early classification, accuracy and earliness,
allowing for their joint optimization despite conflicting tendencies.
During classification, our model learns representations of multi-
variate time series that are then used to both inform early-halting
decisions and to predict labels. Our experimental results for both
synthetic and real-world datasets demonstrate that EARLIEST effec-
tively learns to halt when it observes a signal and wait otherwise,
leading to fine-tuned reactive case-by-case signal-capture. EARLI-
EST effectively balances earliness and accuracy via one hyperpa-
rameter, allowing for analyst-controlled task-dependent solutions.

6 ACKNOWLEDGEMENTS
This research was supported by the U.S. Dept. of Education grant
P200A150306, Worcester Polytechnic Institute through the Arvid
Anderson Fellowship, and the National Science Foundation through
grants IIS-1718310, IIS-1815866, CNS-1852498, and CNS-1560229.
We also thank the Data Science Research group at WPI.

REFERENCES
[1] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter

David, and Christian E Elger. 2001. Indications of nonlinear deterministic and
finite-dimensional structures in time series of brain electrical activity: Depen-
dence on recording region and brain state. Physical Review E 64, 6 (2001), 061907.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. arXiv, 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.

[3] John S Bridle. 1990. Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters. In NeurIPS.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
In EMNLP. 1724–1734.

[5] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber. arXiv, 2012. Multi-column
deep neural networks for image classification.

[6] Martinez Coralie, Guillaume Perrin, E Ramasso, and Rombaut Michèlle. 2018. A
deep reinforcement learning approach for earlyclassification of time series. In
EUSIPCO.

[7] Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179–211.

[8] Mohamed F Ghalwash and Zoran Obradovic. 2012. Early classification of mul-
tivariate temporal observations by extraction of interpretable shapelets. BMC
Bioinformatics 13, 1 (2012), 195.

[9] Mohamed F Ghalwash, Vladan Radosavljevic, and Zoran Obradovic. 2013. Extrac-
tion of interpretable multivariate patterns for early diagnostics. In IEEE ICDM.
201–210.

[10] Mohamed F Ghalwash, Vladan Radosavljevic, and Zoran Obradovic. 2014. Utiliz-
ing temporal patterns for estimating uncertainty in interpretable early decision
making. In ACM SIGKDD. 402–411.

[11] Alex Graves. arXiv, 2013. Generating sequences with recurrent neural networks.
[12] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech

recognition with deep recurrent neural networks. In IEEE ICASSP. 6645–6649.
[13] Guoliang He, Yong Duan, Rong Peng, Xiaoyuan Jing, Tieyun Qian, and Lingling

Wang. 2015. Early classification on multivariate time series. Neurocomputing 149
(2015), 777–787.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Computation 9, 8 (1997), 1735–1780.

[15] Zhengjie Huang, Zi Ye, Shuangyin Li, and Rong Pan. 2017. Length Adaptive
Recurrent Model for Text Classification. In ACM CIKM. 1019–1027.

[16] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
Data 3 (2016).

[17] François Kawala, Ahlame Douzal-Chouakria, Eric Gaussier, and Eustache Dimert.
2013. Prédictions d’activité dans les réseaux sociaux en ligne. In 4ième conférence
sur les modèles et l’analyse des réseaux: Approches mathématiques et informatiques.
16.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. In ICLR.

[19] Yu-Feng Lin, Hsuan-Hsu Chen, Vincent S Tseng, and Jian Pei. 2015. Reliable
early classification on multivariate time series with numerical and categorical
attributes. In PAKDD. 199–211.

[20] Shugao Ma, Leonid Sigal, and Stan Sclaroff. 2016. Learning activity progression
in lstms for activity detection and early detection. In IEEE CVPR. 1942–1950.

[21] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In ISCA.

[22] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014.
Recurrent models of visual attention. In NeurIPS. 2204–2212.

[23] Usue Mori, Alexander Mendiburu, Sanjoy Dasgupta, and Jose A Lozano. 2018.
Early classification of time series by simultaneously optimizing the accuracy and
earliness. IEEE transactions on neural networks and learning systems 29, 10 (2018),
4569 – 4578.

[24] Usue Mori, Alexander Mendiburu, Eamonn Keogh, and Jose A Lozano. 2017.
Reliable early classification of time series based on discriminating the classes
over time. Data Mining and Knowledge Discovery 31, 1 (2017), 233–263.

[25] Jürgen Schmidhuber. arXiv, 2012. Self-delimiting neural networks.
[26] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. 2015. Gra-

dient estimation using stochastic computation graphs. In NeurIPS. 3528–3536.
[27] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.

Policy gradient methods for reinforcement learning with function approximation.
In NeurIPS. 1057–1063.

[28] Markus Weber, Marcus Liwicki, Didier Stricker, Christopher Scholzel, and Seiichi
Uchida. 2014. Lstm-based early recognition of motion patterns. In ICPR. IEEE,
3552–3557.

[29] Jenna Wiens, Eric Horvitz, and John V Guttag. 2012. Patient risk stratification for
hospital-associated c. diff as a time-series classification task. In NeurIPS. 467–475.

[30] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3-4 (1992), 229–256.

[31] Zhengzheng Xing, Jian Pei, and Phillip Yu. 2009. Early Prediction on Time Series:
A Nearest Neighbor Approach. In IJCAI. 1297–1302.

[32] Zhengzheng Xing, Jian Pei, and Philip S Yu. 2012. Early classification on time
series. Knowledge and Information Systems 31, 1 (2012), 105–127.

[33] Zhengzheng Xing, Jian Pei, Philip S Yu, and Ke Wang. 2011. Extracting inter-
pretable features for early classification on time series. In SDM. 247–258.

[34] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In ICML. 2048–2057.

[35] Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for
data mining. In ACM SIGKDD. 947–956.

APPENDIX
Here we describe the details of implementing EARLIEST to aid in
reproducibility.

6.1 Forward pass pseudo-code for inference
using EARLIEST

The pseudo-code for the forward pass through EARLIEST is shown
below, where BaseRNN(), Controller(),Discriminator(), and Baseline()
are each independently defined networks, but their parameters are
all updated together with respect to the final loss. Our models are
implemented in PyTorch 1.0 so the pseudo-code roughly emulates
PyTorch code.

def forward(time_series):
t = 0
action = 0
while action != 1:

x = time_series[t]
state = BaseRNN.forward(x, state)
state_t = concatenate(state, t)
halt_prob = Controller.forward(state_t)
action = Bernoulli.sample(halt_prob)
log_prob = Bernoulli.log_prob(action)
baseline = Baseline.forward(state_t)
t += 1

prediction = Discriminator.forward(state)
halting_point = t
return prediction, halting_point

6.2 Computing the baseline
The baseline network, mentioned in Sections 3.3.2 and 3.3.4, plays
a key role in optimizing policy gradient-based reinforcement learn-
ing methods: variance reduction. A standard approach to variance
reduction is to add a baseline, which is a predicted value that is
subtracted from the raw reward, smoothing the reward function
and therefore reducing the variance in the observed error signals.

In our implementation, we use a one-layer baseline network
with a ReLU nonlinearity (Equation 15) that observes the same in-
formation as the controller (hidden state and temporal information)

and outputs one real value bt at each timestep t .

bt = max(0,Wb [St , t] + bb) (15)

We then train this baseline network to approximate the mean of the
observed rewards by minimizing the mean squared error between
the predicted value bt and the raw reward R.

6.3 Cohort Extraction in MIMIC III
As described in Section 4.1, the MIMIC III database consists of over
58,000 intensive care unit (ICU) stays. As part of our experiments we
perform a common machine learning for healthcare task: mortality
prediction, or predicting which patients will survive their stays in
the ICU of the Beth Israel Deaconess Medical Center in Boston,
MA. We begin by selecting all patients who perish while in the ICU
(5,754), indicated by Hospital_Expire_Flag = 1 in the ADMISSIONS
table of MIMIC-III. We then randomly sample the same number of
surviving patients, totaling 11,508 time series with balanced labels.

Each stay consists of a multivariate time series where each vari-
able is a vital sign, microbiology test, laboratory result, etc. Con-
sidering all possible variables that may be observed for a patient
leads to an incredibly high-dimensional setting, motivating the need
for feature selection. Therefore, we examine a set of commonly-
recorded tests and vital signs from tables MICROBIOLOGYEVENTS,
CHARTEVENTS, and LABEVENTS, pick the five most frequent vari-
ables in this cohort (which as expected end up all being from
CHARTEVENTS), listed in Table 2 along with the ITEMID’s, which
identify measurements for their extraction. Since the timestamps
across variables are often misaligned, we take hourly averages,
impute missing values with variable-wise means, and center each
variable around zero before classifying the time series.

Table 2: Variables from the CHARTEVENTS table in MIMIC-III

Variable ITEMID

Systolic Arterial Blood Pressure 51
Motor Response 454
Non-invasive Blood Pressure Mean 456
Temperature (F) 678
Non-invasive Blood Pressure Alarm [Low] 5817

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 RNN & LSTM Background
	3.3 The Proposed Method

	4 Experiments
	4.1 Datasets
	4.2 Compared Methods
	4.3 Implementation Details
	4.4 Experimental Results

	5 Conclusion
	6 Acknowledgements
	References
	6.1 Forward pass pseudo-code for inference using EARLIEST
	6.2 Computing the baseline
	6.3 Cohort Extraction in MIMIC III

